

Training Manual

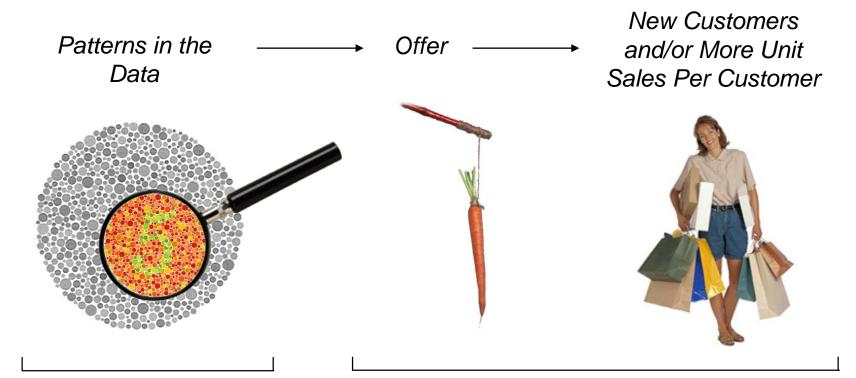
Using Decision Support Science's Predictive Analytics Engine to Maximize Consumer Sales and CRM

Decision Support Sciences. Better Science. Better Solutions.

All contents Copyright © 2016 by Decision Support Sciences

PositionSolve[™], ProductSolve[™], SatisfactionSolve[™], SatisfactionSolve /DP[™], BigDataSolve[™], BigDataSolve / DP[™], SegmentSolve[™] and InnovationSolve[™] are trademarks of Decision Support Sciences (DSS).

No portion of this work may be reproduced in any form without the written consent of Decision Support Sciences.


For permissions or other questions, contact DSS at info@decisionsupportsciences.com.

Introduction: What is Data Mining / Predictive Analytics?

Data Mining is the Process of Finding Patterns in Enterprise Data in Order to Target Individuals with Some Type of Marketing Offer:

Data Mining / Predictive Analytics

8igDataSolve / DP

Campaign Management

Introduction: What is BigDataSolve™?

BigDataSolveTM is a data mining automation tool that rapidly and automatically builds, runs, scans and validates over a million models per week on a modern laptop.

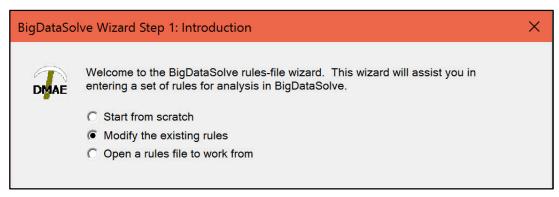
BigDataSolveTM can produce and scan thousands of models in the time it takes to put together one model with a conventional predictive analytics package. Rather than manually setting up each analysis run, the user can efficiently evaluate only the solutions BigDataSolveTM determines are the best ones.

Using the technology of distributed computing, the decision platform version of BigDataSolveTM (BigDataSolve /DPTM) can be run on many computers at once connected by a local area network (LAN) or the internet. This leverages existing efficiently and economically.

Table of Contents

- I. Analysis Setup
 - 1. Using Rules Files
 - 2. Using the Rules Wizard
- **II.** Data Mining
- **III.** Appendix: Dialog Boxes

I. Analysis Setup 1. Using Rules Files 2. Using the Rules Wizard


Using Rules Files

Rules > Start Data Mining Rules Wizard Ctrl+W Execute Define Goal Restart Unfinished Execution Build Mirrored Database Select Variables Recommended Approaches Clarify Model Define Parameters Define Output & Holdback Name & Describe Rules	Execute Define Goal Restart Unfinished Execution Build Mirrored Database Select Variables Recommended Approaches Clarify Model	
Restart Unfinished Execution Build Mirrored Database Select Variables Recommended Approaches Clarify Model Define Parameters Define Output & Holdback	Restart Unfinished Execution Build Mirrored Database Select Variables Recommended Approaches Clarify Model	
Select Variables Recommended Approaches Clarify Model Define Parameters Define Output & Holdback	Select Variables Recommended Approaches Clarify Model	
Recommended Approaches Clarify Model Define Parameters Define Output & Holdback	Recommended Approaches Clarify Model	
Clarify Model Define Parameters Define Output & Holdback	Clarify Model	
Define Parameters Define Output & Holdback		
Define Output & Holdback		
	Denne Fuldanteters	
Name & Describe Rules	Define Output & Holdback	
	Name & Describe Rules	

Rules Files

- A rules file stores all of the analysis settings that you select for a run. If substantially the same databases, variables, or algorithms will be used multiple times, one rules file allows the strategist to not "start from scratch" every time.
- When high performance models are discovered, a rules file constitutes a methods repository and hence becomes part of the knowledge capital of your organization.
- NOTE: A rules file does not store the analysis reports or results...but it allows the run to be reexecuted. The results are stored in the results directories(s).
- To Begin using BigDataSolveTM, Simply Start or Open an Existing File:
 - To start a rules file from scratch, start the Rules Wizard. This is done by selecting the Select Start Rules Wizard from the Rules submenu of the Data Mining menu, as shown at the right.
 - To modify the existing file or set the preferences for the new rules file, use the Rules Wizard.
 - To execute a new or existing rules file, select Data Mining, Execute.

Using Rules Files

- To start the Rules Wizard, select the pencil icon button from the toolbar or select the Start Rules Wizard from the Rules submenu of the Data Mining menu. The first screen will allow you to indicate whether you want to start from scratch, modify an existing file, or open an existing rules file.
 - Start from Scratch: All settings will be blank or set to their default values.
 - **Modify the Existing Rules:** Settings will be set exactly as during the prior saved run. If you modify these the modified rules file can be saved under a different filename at the end of the wizard.
 - **Open a rules file to work from:** an Open File dialog box will appear when you click on the Next button. Browse through existing rules files to select the file desired, and click OK.
- The options to create a new rules file or open an existing one are also available manually from the File menu (the New Rules and Open Rules menu items).

Define Goal

- BigDataSolveTM develops optimum predictive analytics solutions. In this dialog, typical categories of business problems are listed along with the preferred techniques to solve them.
- When you select a problem you wish to address, the algorithms that apply to it will appear in the lower text box. To open or close branches, click on the + or boxes to the left of the tree.

BigDataSo	lve Wizard Step 2: Define Goal X	BigData	Solve Wizard Step 2: Define Goal	×
DMAE	Please select the approach that best describes the problem you are trying to solve or the question you are trying to answer. Find the most profitable customers based (current value). Find the most profitable customers based (lifetime value). Identify the best prospects based on a cross-sell. Identify the best prospects based on any predictor. Identify the best prospects based on any predictor. Identify the best customers to sell to within time constraints. Determine customer loss, or non-retention. Determine customer loss within time constraints. Determine the current product life-cycle. The appropriate algorithms for your selection include: Hultiple Discriminant Analysis Logistic Regression Three Chaid Regression Neural Network		Please select the approach that best describes the problem you are trying to solve the question you are trying to answer. Find the most profitable customers based (current value). Identify the best prospects based on a cross-sell. Identify the best prospects based on any predictor. Identify the best prospects based on any predictor. Determine customer loss, or non-retention. Determine customer loss, or non-retention. Determine the current product life-cycle. The appropriate algorithms for your selection include: Imultiple Discriminant Analysis Simultaneous Entry Wilks' Lambda Mahalanobis Distance Smallest F-Ratio Unexplained Variance Rao's V Cogistic Regression Forced Entry Backward Stepwise (Conditional Statistic) Backward Stepwise (Conditional Statistic) Forward Stepwise (Conditional Statistic) Ecouver Gatewise (Likelibood Patio)	Dr
	< Back Next > Cancel		< Back Next > Can	el

DECISION SUPPORT SCIENCES

- Build a Mirrored Database (A Modeling Mart)
 - A database is required to provide the input for the data mining. The input file must be an IBM-SPSS 7.5 or higher .sav file. IBM-SPSS need not be installed on the computer before using BigDataSolveTM. Note: SPSS should NOT be running when BigDataSolveTM is open; if SPSS is running, the BigDataSolveTM server will not connect to the root server. (The <u>BigDataSolveTM root server</u> application is the single monitor program that creates the models.)
 - Select the Add button to open a browse dialog box to choose a file. While the file is being loaded, a progress indicator will tell you the database name and fields that are being imported.
 - Select the variables to use from the Source Fields box, and move them to the Mirrored Fields box using the arrow button in the middle.

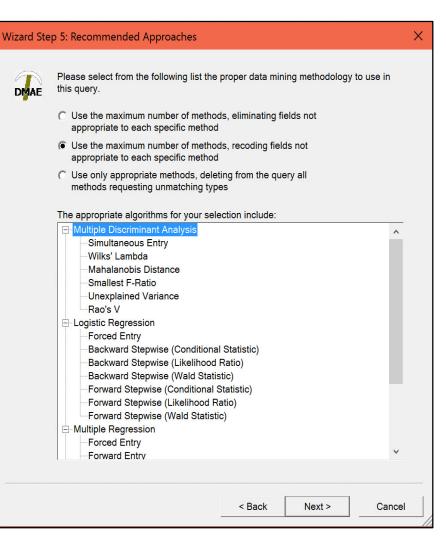
BigDataSolve Wizard Step 3: Build Mirrored Database Х What data would you like to give BigDataSolve access to in order to solve your query? DMAE Selected databases File Name Type Variables Cases Add C:\busin... SP... 5470 3907 Remove Source fields: Jim Corrected.sav Mirrored @ 10am BK bal avo New Field 10amMM a BK bal change1 @ 10pm BK bal change2 10pmMM BK bal trend1 Define Type a 11am BK bal trend2 @ 11amMM BK bal var @ 11pm BK num accts avg @ 11pmMM BK prof avg BK rev ava @ 12am @ 12amMM IL bal avg @ 12pm IL bal change1 @ 12pmMM IL bal change2 IL bal trend1 a 1am 1amMM a IL bal trend2 @ 1pm IL bal var LN1PC bal avo a 1pmMM @ 2am LN1PC bal change1 @ 2amMM LN1PC bal change2 LN1PC bal trend1 a 2pm < Back Next > Cancel

taSolve / UY

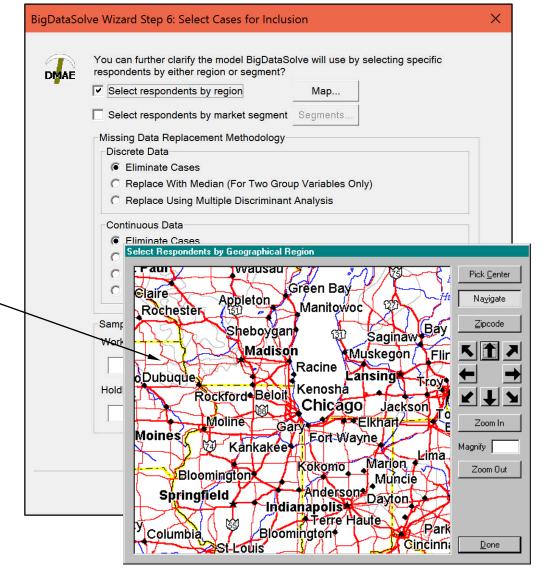
Which data fields would you like BigDataSolve to schedule for prediction, and which fields should be used to predict those variables?	
Mirrored Field to Predict TotalAssetDollars Fields to be used in prediction BK bal avq BK bal chanqe1 BK bal chanqe2 BK bal trend2 BK bal var BK bal trend2 BK rev avq IL bal chanqe2 IL bal var BK rev avq IL bal chanqe2 IL bal chanqe2 BK bal trend2 BK bal trend2 BK num accts avq BK rev avq IL bal chanqe2 IL bal chanqe1 IL bal chanqe1 IL bal chanqe1 IL bal chanqe2 IL bal chanqe2 IL bal trend1 IL bal chanqe2 IL bal chanqe2 IL bal chanqe2 IL bal chanqe2 IL N1PC bal chanqe2 IN1PC bal trend1 IL bal chanqe2 IN1PC bal trend2 IN1PC bal trend2 IN1PC bal trend2 IN1PC bal trend2 IN1PC bal var IN1PC bal var IN1PC bal var IN1PC bal var IN1PC bal var IN1PC bal var IN1PC bal var IN1PC bal var	
< Back Next > Cancel	

11

■ Select Variables


- Select one variable to predict, and at least one variable to be used in prediction. The field to predict may be either a categorical (discrete) variable with 2 or more non-missing levels, or a scalar variable. Highlight the variable(s) in the Mirrored Fields box, and use the arrows to move them to the box of selected variables.
- All of the available fields are originally listed in the Mirrored fields list box. In this example, we have selected the field TotalAssetDollars to be the variable to predict and ALL the rest of the fields to be used in the prediction.

Identify Recommended Approaches


- The data variables that were selected for the analysis may not be appropriate for every analysis method that is used. There are three options for dealing with data fields that are incompatible with an analysis method.
 - Use the maximum number of methods, eliminating fields not appropriate to each specific method: This option leaves the incompatible data field out of the particular method for which it is inappropriate.
 - Use the maximum number of methods, recoding fields not appropriate to each specific method: The second option attempts to use all of the selected data fields. Data that is not compatible with a specific method will be recoded (i.e. a continuous variable will be encoded as a dummy variable).
 - Use only appropriate methods, deleting from the query all methods requesting unmatched types: This option eliminates the analysis method, rather than the data field, if there is incompatible data.

- Select Cases for Inclusion by Region
 - A specific segment of respondents can be extracted from the data for an analysis run. These respondents can be selected either by region or by market segment.
 - The region option can only be used if location information has been included in the selected databases. If the region option is checked, a map dialog will appear. Use the zoom and arrow controls to select the desired region.

Using the Rules Wizard: Step 6 (cont'd)

- Select Cases for Inclusion by Segment
 - - Market segment: Specific segments of the market can be included or excluded from the analysis. Use the mouse to click on the checkmark to the left of the segment or level. The levels for the highlighted segment appear in the Segment Levels box on the right. Segments and levels with a checkmark will be included in the analysis. Select the Done button when you are finished selecting segments. The total number of cases to be used is displayed at the bottom of the dialog at "Matching Cases".

BigDataSol	ve Wizard Step 6: Select Cases for Inclusion	
DMAE	You can further clarify the model BigDataSolve will use by selecting specific respondents by either region or segment?	
	Select respondents by region Map	
	Select respondents by market segment Segments	
-	Missing Data Replacement Methodology	
	Discrete Data Eliminate Cases	
	 Replace With Median (For Two Group Variables Only) 	
Minin	gSolv Wizard Step 6: Select Cases by Market Filters	
	Defining market filters localizes your guery onto respondents	
DM/	Ke matching specific characteristics. By deselecting variables' levels, you can reduce total query time and get better results.	
Sea	ments: Segment Levels:	
	RETAINED Male	
	MUTFUND Female	
	GENDER LPDEPA 100%	
	LPDEPB	
	LPDEPC LPCHKA	
	LPCHKB 2754 75.00%	
	LPCDB HHREGA	
	HHREGB	
	HHREGC HHREGD	
		-1
		ei
<u></u>	elect All Matching Cases: 971 (48%)	
	Cases Searched: 100% Done	

Using the Rules Wizard: Step 6 (cont'd)

- Select Cases for Inclusion, cont.
 - In data mining, models must be validated. The most reliable and real-world method of validation is to test the model on cases not used to build the model. This allows the strategist to compare what the model predicts to what is already known about the disposition of that variable. This is called hold-back sample validation.
 - The Sample Size reflects the number of valid cases, taking into account any segments that were selected. A portion of the valid cases can be randomly selected by adjusting the working file size slider.
 - The Rules Wizard allows you to specify the holdback sample. The holdback sample is the portion of the data that is **excluded** from the current analysis run. Note: the holdback sample is NOT the sample of respondents being **included** in the analysis.
 - The percentage of the sample and number of respondents in the holdback sample may be specified above the slider.

BigDataSol	ve Wizard Step 6: Select Cases for Inc	lusion		×
DMAE	You can further clarify the model BigDat respondents by either region or segmen Select respondents by region ✓ Select respondents by market segme Missing Data Replacement Methodolog Discrete Data Eliminate Cases Replace With Median (For Two G Replace Using Multiple Discrimin Continuous Data Eliminate Cases Replace with Mean Replace Using Multiple Regressi Replace Using Multiple Regressi Replace Using Maximum Likeling 	t? Map Segments. By Gy Group Variables ant Analysis		ecific
	Sample Size (3672 Valid Cases) Working File Size: Holdback Sample (75% recommended):	3672 100% 2754	75.00%
		< Back	Next >	Cancel

BigDataSolve Wizard Step 7: Define Parameters

Please customize the ways in which you want BigDataSolve to work with the data in order to get better output. By selecting different algorithms from the drop-down box, you can see what the values in the sliders mean for each particular approach. Data mining method:

Multiple Discriminant Analysis ▼ Customize each algorithm individually Disable this algorithm O Use the same settings for all algorithms DIRECT plus 4/5 of the others Methods: PIN varied from 0.01 to 0.09 in 23 steps Criteria Number of Nodes Per Layer Iterations: Not Applicable to this Algorithm powers of 0.50000 to 1.50000 by 0.14286 Transformations: Transformation Types: Power plus 1/2 of the others Multiple Discriminant Analysis will generate 1488 syntax scripts. All algorithms together will generate 5391 syntax scripts.

Advanced Cutoff at: 0 Sack Next > Cancel

8igDataSolve / DP

Define Parameters

- This dialog displays the analysis specifications for each data mining method.
- The parameters can be set the same for all algorithms, or uniquely for each algorithm. Use the radio buttons under the Data mining method box to specify your choice.
 - If 'Use the same settings for all algorithms' is selected, All algorithms must be selected under Data mining method in order to move the sliders.
 - *To customize each algorithm individually,* set the parameters for one method, then select the next method to customize.
- Move the sliders to change the level for that criteria. If an algorithm is being customized individually, the current level of the parameter is displayed on the right side of the box.
- The combined effect of the changing the sliders on the number of model runs is displayed below the last slider; it changes dynamically as the level of any specific parameter is modified.

X

Define Parameters

 To further customize the analysis, select the "Advanced" button at the bottom of the prior dialog to determine the order of the selected methods or the transformations settings.

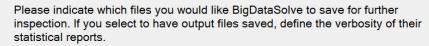
BigDataSolve Wizard Step 7: Advanced Parameter Settings

Do you want additional control over the way BigDataSolve will work with the data in order to further optimize results? Hand selecting the method order or increasing data transformation granularity may improve overall performance and speed.

All Algorithms Multiple Discriminant Analysis Logistic Regression Multiple Regression Three Chaid Regression Neural Network

Transformations	
Minimum Exponent	0.5
Maximum Exponent	1.5
Maximum Steps of	11
Transformation	
Selection	C Non-linear
	Linear
Criteria	
Minimum	0.01
Maximum	0.09
Steps	30
	Minimum Exponent Maximum Exponent Maximum Steps of Transformation Selection Criteria Minimum Maximum

- For example, if Rao's V is set as the first method in the advanced dialog for Multiple Discriminant Analysis AND "In Order Below" is selected, and only 1/6 methods is selected on the Define Parameters dialog (as the settings are shown), then scripts will only be generated for MDA using the Rao's V method.
- The total number of syntax scripts (models) to be generated is shown at the bottom of the prior dialog. If a cutoff number is set, BigDataSolveTM will randomly choose from the possible runs the cutoff number to run in the analysis.


8igDataSolve / DP

Х

- Define Output Depth and Holdback Sample
 - In this dialog, the strategist can select how
 BigDataSolveTM handles the output, and which output is saved for future use.
 - Changing the style of output affects how much information is included in the output files. This does not affect the runtime statistics information.

BigDataSolve	Wizard	Step	8:	Define	Ouput

- Save syntax files
- Save output files

DMAE

verbose output

 \times

Save runtime statistics to a CSV file (comma separated values)

< Back

Cancel

8igDataSolve / DP

Next >

■ Closure

- It is best to name and save your settings as a rules file in case you want to use the same or similar settings in the future.
- The 'Rules Internal Name' field is not a file name, so does not have standard file name restrictions; characters such as / \, :; and " are allowed.
- When the Finish button is selected, you will be asked if you want to save the Rules file. A Save As dialog box will appear, and you can specify a filename and directory.
- When a rules file is complete, select Execute from the Data Mining menu to run the analysis.

8igDataSolve / DP

tasoi	ve wizard Step 9: Closure	\sim
AE	Congratulations! You have finished defining a set of operating rules for BigDataSolve. Please choose a name and an optional short description of this set. Then give this definition a directory into which temporary files should be written.	
	Rules Internal Name:	
	Predict Total Assets	
	Description:	
	Working Directory:	
	C:\TEMP\	
	 Save Rules on Finish Launch Now 	
	< Back Finish Cancel	

BigDa

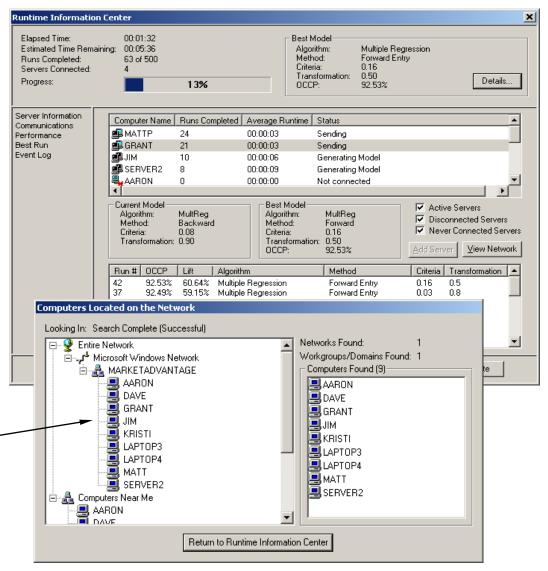
DM

II. Data Mining

■ Execute

- A rules file must exist and be *open* to execute data mining.
- Make sure that SPSS is not open.
- From the Root Server, select Execute from the Data Mining menu.
- BigDataSolveTM servers will open the .sav data files that are linked to the open rules file, start the runs,, and then will build predictive models.
- If selected, IBM-SPSS will also be launched to perform the runs in parallel to ensure the results are mathematically identical. Select this in the preferences menu.

Runtime Information	n Center
Elapsed Time: Estimated Time Rema Runs Completed: Servers Connected: Progress:	00:01:32 ining: 00:05:36 63 of 500 4 13% Best Model Algorithm: Multiple Regression Method: Forward Entry Criteria: 0.16 Transformation: 0.50 0CCP: 92.53% Details
Server Information	Computer Name Runs Completed Average Runtime Status
Performance	🖷 MATTP 24 00:00:03 Sending
Best Run	🕮 GRANT 21 00:00:03 Sending
Event Log	JIM 10 00:00:06 Generating Model
	SERVER2 8 00:00:09 Generating Model
	🔩 AARON 0 00:00:00 Not connected
	Current Model Best Model Image: Current Model Algorithm: MultReg Algorithm: MultReg Method: Backward Method: Forward Criteria: 0.08 Transformation: 0.50 Transformation: 0.90 0CCP: 92.53%
	Run # OCCP Lift Algorithm Method Criteria Transformation
	42 92.53% 60.64% Multiple Regression Forward Entry 0.16 0.5 37 92.49% 59.15% Multiple Regression Forward Entry 0.16 0.5 34 91.82% 59.08% Multiple Regression Forward Entry 0.13 0.5 52 90.82% 53.28% Multiple Discriminant Analysis Backward Elimination 0.07 0.6 5 89.61% 49.57% Multiple Discriminant Analysis Mahalanobis Distance 0.11 1.3 26 89.85% 49.57% Multiple Regression Stepwise Selection 0.08 1.3 10 88.89% 47.06% Multiple Regression Backward Elimination 0.11 1
Abort	Suspend C All Running 500 of 1783 possible runs


- (Note: BigDataSolveTM's native algorithms run 10-100 times faster than IBM-SPSS, but BigDataSolveTM is not as capable in handling off-nominal input data conditions such as matrices that are quite difficult to invert).
- The dialog at the right is the Server Information portion of the Runtime Information Center. All potential servers on the network are displayed, along with their current status. To see more information, select one of the options on the left side of the dialog.
- The analysis can be paused at any time by using the Suspend button. To resume analysis, select "Restart Unfinished Execution" from the Data Mining menu.

■ Execute (cont'd)

- Displayed in the "Best Model" box at the top of the dialog are the specifications of the best model in the analysis thus far, across all servers.
- Select the Details button in the Best Model box for a prediction accuracy graph of each run. The graph shows the prediction levels in numerical order, not in the order in which they were performed.
- Use the "Add Server" button to add a server that is not on the network, or that BigDataSolve[™] does not find automatically.
- (BigDataSolve / DPTM Only): To view other computers on the local area network executing the runs, use the "View Network" button.

■ Execute, cont.

- There are several different ways to views information on a current BigDataSolveTM run.
- The Communications and Event log dialogs are shown on the right.
- (BigDataSolve / DPTM Only): On the communications dialog, potential servers are shown as transparent images until they are connected. When a server is active and connected to the root server, the image will be darkened and the line connecting the server to the root server will be blue. A ball in either direction indicates data being sent.
- The bottom dialog displays the Event Log screen. This shows the status of completed runs, and connection and analysis events on the servers and root server. The 'I' symbol on the left denotes informational stats, the 'E' symbol designates errors, and the '?' symbol signifies warnings. The time that each server connects or disconnects is also shown.
- Other screens with run information may be shown by selecting an option on the left side of the Runtime Information dialog.

7% OCCP: Server Information Performance Best Run Event Loa C All Running 30 of 3113 possible runs Abort <u>S</u>uspend <u>U</u>pdate 00:01:01 Elapsed Time Best Mode Estimated Time Remaining: Done Algorithm: Multiple Discriminant Analysis Runs Completed: 30 of 30 Method: Criteria: Smallest F-Ratio 0.12 Servers Connected: 0.60 Transformation: Details... Progress: OCCP: 91.82% Server Information Server Communications Time Event Category Performance 9:16:54AM on Tue Oct 09, 2001 Run Completed. JON Best Run JON 9:16:55AM on Tue Oct 09, 2001 Run Started. Event Log 9:16:57AM on Tue Oct 09, 2001 Run Completed JON 9:16:58AM on Tue Oct 09, 2001 Run Started. JON 9:16:58AM on Tue Oct 09, 2001 Run Completed GRANT 9:16:58AM on Tue Oct 09, 2001 Run Completed. JON 9:16:59AM on Tue Oct 09, 2001 Run Started GRANT 9:16:59AM on Tue Oct 09: 2001 Run Started JON 9:17:00AM on Tue Oct 09, 2001 Run Completed. GRAN1 9:17:01AM on Tue Oct 09, 2001 Run Started GRANT 9:17:03AM on Tue Oct 09, 2001 Run Completed. GRAN1 3 9:17:03AM on Tue Oct 09. 2001 MiningSolv Execution Completed Details Close **DECISION SUPPORT SUPPORT SUPPORT**

Best Mode

Algorithm: Method:

Criteria:

Transformation:

Multiple Discriminant Analysis

Details...

Smallest F-Ratio

1.40

88.10%

00:00:18

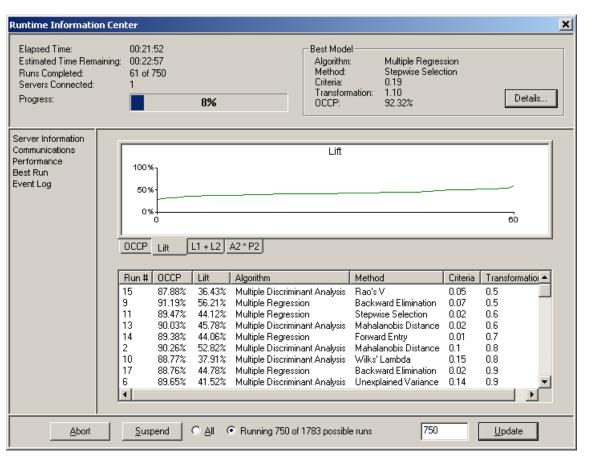
00.00.14

2 of 30

Elansed Time:

Progress

Runs Completed:


Servers Connected:

Estimated Time Remaining:

taSolve /

■ Execute, cont.

- The image to the right is the is the Performance tab from the Runtime Information Center. To change the performance metric being displayed, click on one of the tabs below the graph. The graphs are dynamically updates as the runs complete.
- The image below is the Performance tab from the Runtime Information Center. To change the performance metric being displayed, click on one of the tabs below the graph. The graphs are dynamically update as the runs complete.

- The Overall Correct Classification Percentage (OCCP) tab shows the "lift" above chance alone. Chance is calculated by taking the sum of the squares of the number of cases in each group, divided by the square of the total number of cases. Lift = (100% OCCP) / (100% Chance)
- In the bottom half run statistics are presented. These statistics can be sorted by any column by clicking on the column heading. Use the scroll bar to view all of the statistics. This list of statistics is also shown sorted by lift in the Execution Summary dialog when the runs have been completed.

- Execute, cont.
 - The image on the right shows the Best Run dialog from the Runtime Information Center. This dialog displays detailed results for one run.
 - The best run tends to change frequently during the beginning of the run, then less frequently as time passes. To change the criteria used to select the best run, use the mouse to click the arrow in the "Criteria for best run" box.

Runtime Information Cen	ter				×
Elapsed Time: Estimated Time Remaining: Runs Completed: Servers Connected: Progress:	00:01:29 00:01:22 3 of 30 1	10%	Best Model Algorithm: Method: Criteria: Transformation: OCCP:	Multiple Discriminant Analysis Smallest F-Ratio 0.10 0.80 96.94%	Details
Server Information Communications Performance Best Run Event Log		Criter Algorithm: Method: Criteria Transformations: Performance Compar OCCP: Lift: L1+L2: A2*P2: Additional Run Info- Server: Run Time: Holdback size: Model Size	ia for best run: OCCP Multiple Discriminant Analysis Smallest F-Ratio 0.10 0.80 ison 96.94% 74.90% 0.00% 0.00% 0.00% KRISTI 00:00:04 1505 495		
Abort	<u>S</u> uspend	O <u>A</u> ll ⊙ Runni	ng 30 of 3113 possible runs	0	Ipdate

• Changing the criteria used to select the best run will also change the run that is displayed in the Best Model box at the top of the Runtime Information Center. This change will be reflected on all dialogs of the Runtime Information Center.

- Using the BigDataSolveTM Server
 - Some terminology is helpful here.
 - The main application BigDataSolveTM, is called the Root Server, because it is the root application that sends all the commands out and receives back results. The Root Server itself does not create models.
 - The BigDataSolveTM Server(s) are small, efficient applications (see the image to the right) on the network that "do the math"

Eile Edit <u>A</u> vailability <u>S</u> tatistical Server <u>H</u> elp	
Run Status Receiving Data File Receiving Run Specificatons Syntax Generation Transfering Commands to Modeling Server Generating Model Determining Model Performance Sending Run Results to Client	Current Connection Computer: JON Start Time: 09:06 AM Runs Completed: 22 Average Run Time: 00:00:16 Connection Progress
Algorithm: LogReg Method: BStep(Cond) Criteria: 0.09 Transformation: 0.846153846153846	Modeling Server Priority Above Normal Disconnect

- To generate models using the BigDataSolveTM Root Server, there must be at least one BigDataSolveTM server open.
- There are two versions of the BigDataSolveTM Root Server, BigDataSolveTM and BigDataSolve/DPTM. BigDataSolve/DPTM allows only one server. BigDataSolve/DPTM is the distributed computing superset of BigDataSolveTM – it allows up to 1,000 servers.
- If the BigDataSolveTM server is open and connected through a network to the computer with the BigDataSolveTM Root Server, the Root Server will automatically locate the server.
- When the "Execute" command is run from the Data Mining Menu of BigDataSolveTM, BigDataSolveTM will begin generating models with all available servers.

■ Scheduling the BigDataSolveTM Server

- Availability of the server can be customized by selecting 'Advanced' from the Availability menu on the server. In the top portion of the dialog, a specific time can be specified to allow a connection. To set up a schedule of availability, use the Custom option, and the bottom section of the dialog will become available.
- *Either* the times to allow a connection or the times to block a connection are shown. Select the Allow Connection or Don't Allow Connection options to change which options are viewed. Select one or more days and a range of times, then select the Add button to add an additional set of criteria for the server availability.

C Always C Never C At 10:26 AM C In 0 + hours 0 - C Custom Custom Connection Schedule-) 📩 minutes	
Day	Start Time	Stop Time
+ Weekdays	5:50 PM	5:50 AM NextDay
Sundau 🗆 Mondau I	Tuesday - Divisionaday	🗆 Thursday 🗖 Friday 🔽 Saturday
it ounday i monday i		i inuisuay i riluay i∙ saturuay
🗆 Weekdays 🔽 Weekend		
		Next Day (Allow Connect
🗆 Weekdays 🔽 Weekend		Next Day

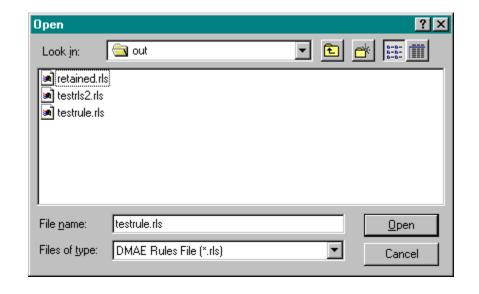
Execution Summary

- When a run has been completed, the BigDataSolveTM Execution Summary will be displayed.
- This information is sorted in descending order of Lift, which puts the best runs at the top.
- The Run # column shows the order that the runs were completed. The SPS and SPO files are saved for each run and named by the run number, so if you want to rerun a specific syntax file, or inspect the output later, the run number will be necessary.

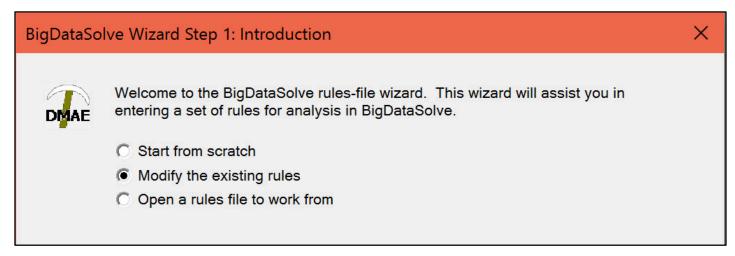
Run #	Server	OCCP	Lift	Algorithm	Method	Criteria	Transformation	-
0	KRISTI	93.81	46.7	Multiple Discriminant Analysis	Rao's V	0.03	1.32	
30	JON	93.81	46.7	Multiple Discriminant Analysis	Rao's V	0.03	1.34	
27	KRISTI	93.75	46.67	Multiple Discriminant Analysis	Mahalanobis Distance	0.09	0.98	
8	KRISTI	93.65	46.61	Multiple Discriminant Analysis	Mahalanobis Distance	0.04	1.36	
41	JON	93.65	46.61	Multiple Discriminant Analysis	Mahalanobis Distance	0.09	0.66	
24	KRISTI	93.64	46.6	Multiple Discriminant Analysis	Rao's V	0.08	1.3	
65	JON	93.64	46.6	Multiple Discriminant Analysis	Rao's V	0.08	1.4	
33	KRISTI	93.63	46.6	Multiple Discriminant Analysis	Wilks' Lambda	0.11	0.62	
73	JON	93.63	46.6	Multiple Discriminant Analysis	Wilks' Lambda	0.12	0.72	
36	KRISTI	93.61	46.58	Multiple Discriminant Analysis	Wilks' Lambda	0.03	0.74	
20	KRISTI	93.59	46.57	Multiple Discriminant Analysis	Smallest F-Ratio	0.14	1.4	
59	JON	93.59	46.57	Logistic Regression	Backward Stepwise (Conditional Statistic)	0.11	1.3	
1	KRISTI	93.59	46.57	Multiple Discriminant Analysis	Wilks' Lambda	0.18	0.82	
31	JON	93.59	46.57	Multiple Discriminant Analysis	Mahalanobis Distance	0.05	0.52	
2	KRISTI	93.53	46.54	Multiple Discriminant Analysis	Mahalanobis Distance	0.11	1.32	
32	JON	93.53	46.54	Multiple Discriminant Analysis	Mahalanobis Distance	0.12	1.26	
42	KRISTI	93.5	46.52	Multiple Discriminant Analysis	Smallest F-Ratio	0.17	1.1	
77	JON	93.5	46.52	Logistic Regression	Backward Stepwise (Conditional Statistic)	0.05	0.5	
17	KRISTI	93.49	46.52	Logistic Regression	Forward Stepwise (Conditional Statistic)	0.1	0.6	
55	JON	93.49	46.52	Logistic Regression	Backward Stepwise (Likelihood Ratio)	0.04	0.8	
5	KRISTI	93.47	46.51	Multiple Discriminant Analysis	Smallest F-Ratio	0.15	0.8	
37	JON	93.47	46.51	Multiple Discriminant Analysis	Smallest F-Ratio	0.17	1.22	
6	KRISTI	93.46	46.5	Multiple Discriminant Analysis	Smallest F-Ratio	0.14	0.96	

- OCCP stands for Overall Correct Classification Percentage: the percentage of the holdback sample that was correctly classified.
- Lift is the correct classification percentage **above** chance alone. This is determined by comparing the OCCP to the percentage achieved by chance alone.
- Transformation refers to the power to which the predictors were raised. The range and steps for transformation can be set in the Define Parameters step of the Rules wizard, by using the Advanced button.
- The specifications of each run are listed, so that algorithms that performed well can be explored further for the current data set.

III. Appendix - Reference Manual

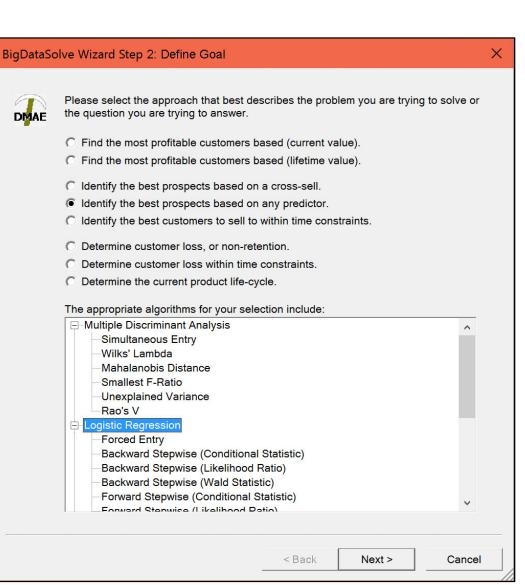


1. File: Open Rules File


- A rules file stores all of the files, options, and variables that have been selected while using BigDataSolveTM. A rules file must be opened or created to begin the analysis.
- To Create a rules file, select New Rules from the File menu before you start the analysis.
- To use an existing rules file, select Open Rules from the File menu.
- This dialog box will be opened that allows you to browse through all directories. When the desired file has been selected, click the Open button.
- If the Cancel button is selected, BigDataSolveTM will exit this dialog box without opening a rules file.

taSolve / UP

2. Rules Wizard Step 1: Introduction



- The rules file is the easiest and most efficient way to step through all of the customizable options for the data mining.
- To begin the rules wizard, either select the pencil icon from the toolbar, or "Start Rules Wizard" from the Rules submenu of the Data Mining menu. The rules wizard will present options on each screen that must be completed to execute the data mining analysis. Make your selection, then click on the Next button.
- At any point beyond the second step, you can also go back to the previous rules wizard pages to modify your selections by using the Back button.
- If the Cancel button is selected, BigDataSolveTM will exit the wizard and cancel any changes made.

3. Rules Wizard Step 2: Define Goal

- This dialog allows you to select the desired business problem, and displays the appropriate algorithms for that problem.
- Select the desired business problem. Algorithms will be refreshed to show only those that would be used to determine solutions.
- When you are satisfied with your selection, click on the Next button.
- If the Cancel button is selected, BigDataSolveTM will exit this dialog and cancel any changes made.

4. Rules Wizard Step 3: Build Mirrored Database

- In this step, the database to be used for the analysis is selected and imported.
- To open a database, select the Add button. An Open File dialog will appear. Select a file and click on the Open button, and it will be imported into BigDataSolveTM.
- If a database name was already selected for the current rules file, but has the wrong path or file name, use the Remove button to delete the name and reselect it.
- To select the variables to be used from a database, highlight the database name on the wizard screen. The available variables will appear in the Source Fields box. Highlight any number of fields from the Source Fields box, then click on the arrow to move the fields to the Mirrored fields box. The mirrored fields are those that will be included in the data mining execution.
- To select fields from a different database, highlight the database name, and select the fields to mirror.
- Select the Next box to move to the next screen.

BigDataSolve Wizard Step 3: Build Mirrored Database Х What data would you like to give BigDataSolve access to in order to solve your query? DMAE Selected databases File Name Type Variables Cases C:\busin... SP... 5470 3907 Remove Source fields: Jim Corrected.sav Mirrored a 10am BK bal avg New Field ^ a 10amMM BK bal change1 a 10pm BK bal change2 10pmMM BK bal trend1 a Define Type BK bal trend2 a 11am 11amMM BK bal var a BK num accts avq a 11pm a 11pmMM BK prof avq a 12am BK rev avg 12amMM a IL bal ava a 12pm IL bal change1 12pmMM a IL bal change2 a 1am IL bal trend1 a 1amMM IL bal trend2 IL bal var a 1pm a 1pmMM LN1PC bal avo LN1PC bal change1 a 2am LN1PC bal change2 a 2amMM 2pm LN1PC bal trend1 @ < Back Next > Cancel

5. Rules Wizard Step 4: Select Variables

- Once the variables from all of the databases have been selected, the fields are divided into predictor and predicted fields.
- Select the variables in the Mirrored fields box, then use the arrows to move the fields to either the "Fields to predict" or the "Fields to be used in prediction" boxes.
- There should only be one field to predict, and at least two predictor variables.
- When the desired fields have been selected, click on the Next button.

BigDataSolve Wizard Step 4: Select Variables X Which data fields would you like BigDataSolve to schedule for prediction, and which fields should be used to predict those variables? DMAE Mirrored Field to Predict TotalAssetDollars • Fields to be used in prediction BK bal avo BK bal change1 BK bal change2 BK bal trend1 BK bal trend2 BK bal var BK num accts avg BK prof avg BK rev ava IL bal avo IL bal change1 bal change2 IL bal trend1 IL bal trend2 IL bal var • LN1PC bal avo LN1PC bal change1 LN1PC bal change2 LN1PC bal trend1 LN1PC bal trend2 LN1PC bal var LN1PC num accts avo Continuous Dependent Variable Classification is correct if 5 or 10 % of actual value, whichever is greater < Back Next > Cancel

6. Rules Wizard Step 5: Recommended Approaches

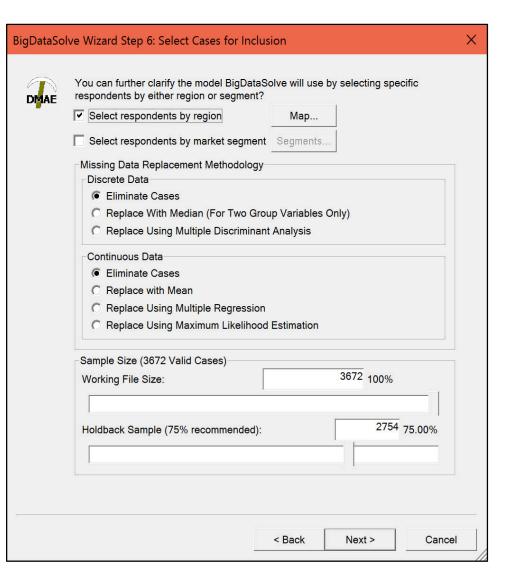
- There may be some data fields that are not compatible with an algorithm that will be used in the analysis. This step allows the user to choose how BigDataSolveTM will handle the incompatible fields. There are three options:
 - The first option leaves the incompatible data field out of the particular method for which it is inappropriate.
 - The second option attempts to use all of the selected data fields. Data that is not compatible with a specific method will be recoded (i.e. a continuous variable will be transformed using exponents to be used as a discrete variable).
 - The third option eliminates the analysis method, rather than the data field, if there is incompatible data.
- Select the option by clicking on it, then select the Next button.

Wizard Step 5: Recommended Approaches X Please select from the following list the proper data mining methodology to use in this query. DMAE O Use the maximum number of methods, eliminating fields not appropriate to each specific method Use the maximum number of methods, recoding fields not appropriate to each specific method C Use only appropriate methods, deleting from the query all methods requesting unmatching types The appropriate algorithms for your selection include: Multiple Discriminant Analysis Simultaneous Entry Wilks' Lambda Mahalanobis Distance Smallest F-Ratio Unexplained Variance Rao's V Logistic Regression Forced Entry Backward Stepwise (Conditional Statistic) Backward Stepwise (Likelihood Ratio) Backward Stepwise (Wald Statistic) Forward Stepwise (Conditional Statistic) Forward Stepwise (Likelihood Ratio) Forward Stepwise (Wald Statistic) - Multiple Regression

Next >

Cancel

< Back

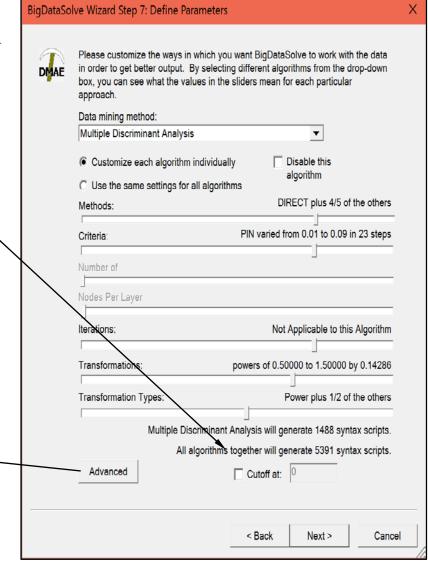

8igDataSolve / DP

Forced Entry

Forward Entry

7. Rules Wizard Step 6: Select Cases for Inclusion

- The data file can be filtered based on segment variables. Multiple segments can be selected so that for example, only people with a loan account who have been with the bank for more than 10 years are included in the run.
- Missing data is data that is either system missing or marked as missing in SPSS.
 Select one of the options to change how missing data is handled by BigDataSolveTM.
- Missing data can be handled differently for discrete or continuous variables.
- If segments have been selected, the Working File Size reflects the number of cases included in the selected segments. Use the slider to change the selected number of cases to use from the working data file and for the holdback sample.



8. Rules Wizard Step 7: Define Parameters

- All of the methods and criteria used for the analysis can be customized using this dialog. Select one of the Data Mining Methods to customize the options for that method. Use the advanced button at the bottom to set specific exponent parameters or change the order of the methods to be used within each algorithm.
- The number of model runs generated given the current settings is displayed at the bottom of the dialog. A random selection of these possible scripts can be selected to be run by checking the "Cutoff at" box and entering a number of scripts to be run.

BigDataSolve Wizard Step 7: Advanced Parameter Settings									
Do you want additional control over the way BigData5 selecting the method order or increasing data transfor All Algorithms Multiple Discriminant Analysis Logistic Regres	rmation granularity may imp	rove overall performance and speed.							
	Transformations	The online negression neural network	1						
Method	rianoronnanorio	loc .							
Select how methods should be included in the analysis	Minimum Exponent	0.5							
when at least one method is to be left out	Maximum Exponent	1.5							
C In Order Below	Maximum Steps of	11							
	Transformation								
Random	Selection	C Non-linear							
Simultaneous Entry	Selection	Linear	1						
Wilks' Lambda	Criteria								
Mahalanobis Distance	Minimum	0.01							
Smallest F-Ratio	minimum								
Unexplained Variance	Maximum	0.09							
Rao's V									
	Steps	30							

9. Rules Wizard Step 8: Define Output

- Syntax and Output files that are saved are saved in the working directory specified in Step 9 of the wizard.
- A folder is created in the working directory for each of the selected methods, and the syntax and output files are saved in the subdirectories.
- The runtime statistics are saved in a CSV file in the working directory.

BigDataSolve Wizard Step 8: Define Ouput

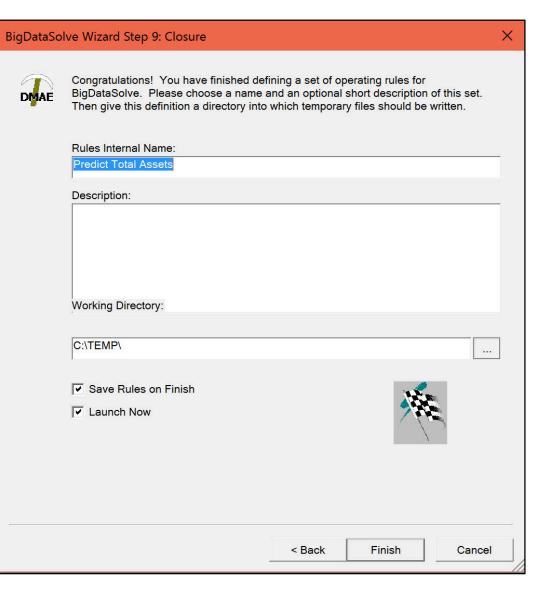
Please indicate which files you would like BigDataSolve to save for further inspection. If you select to have output files saved, define the verbosity of their statistical reports.

- Save syntax files
- Save output files

verbose output

 \times

Save runtime statistics to a CSV file (comma separated values)


8igDataSolve / DP

Next >

10. Rules Wizard Step 9: Closure

- The rules internal name is not a file name, but a reference for the rules file that is used within BigDataSolveTM and used for a run title. The rules internal name and description are optional.
- The working directory specifies where all of the output from the runs will be saved.

